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1. Introduction

1.1. Goals. The goal of these two talks is to give an overview of the article [1]. After giving a general
overview of the results under some simplifying assumptions, we will spend the rest of our time discussing
the case of GSp4.

1.2. Singular cohomology of Shimura varieties. Let (G,X) be a Shimura datum, let K ⊂ G(Af )
be a (sufficiently small) compact open subgroup and let

SK(G,X) := G(Q)\(X ×G(Af )/K

be the corresponding Shimura variety, which is a smooth variety of dimension d over C, let us assume
that it is also compact. One generally expects that all the ‘interesting’ cohomology classes in the singular
cohomology

H∗sing(SK(G,X),Z)

lie in middle degree d 1 . For example if we tensor with C, then by Matsushima’s formula there is a
Hecke-equivariant bijection (for the action of the Hecke algebra of C[K\G(Af )/K])

H i
sing(SK(G,X),Z)⊗ C '

⊕
π

(π∞)K ⊗H i(g, π∞)m(π)

where π runs over automorphic representations of G that are cohomological (with respect to the trivial
representation) and H i(g,−) denotes Lie algebra cohomology. In this case the ‘interesting’ cohomology
classes are those associated to tempered automorphic representations, and it is a Theorem of Borel-
Wallach that these are indeed concentrated in degree d. See the notes [6] from Joaquin’s talk in the study
group last winter for more details.

Another example would be the Theorem of Caraiani-Scholze [2] that

H∗sing(SK(G,X),F`)m

is concentrated in degree d for certain compact unitary Shimura varieties, under some assumptions on
m. Here m is a maximal ideal of the Hecke algebra; localising at m means looking at the piece of
cohomology with fixed mod ` eigenvalues determined by m. The condition on m is that the associated
Galois representation ρm is generic at some prime p 6= ` (which means that the ratios of the Frobp
eigenvalues are not equal to p).

One of the main results of the Boxer-Pilloni paper is a result about

H∗sing(SK(G,X),Qp),

1For more general locally symmetric spaces, one expects instead a range of degrees of length `0, the so-called ‘defect’ of
the group

1
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or rather about

H∗sing(K
p) := lim−→

Kp

H∗sing(SKpKp(G,X),Qp),

where Kp ⊂ G(Apf ) is a fixed compact open subgroup and the projective limit is indexed by compact open

subgroups Kp ⊂ G(Qp). This cohomology group has an action of G(Qp), so that we can define a finite
slope subspace.

Theorem 1.2.1 (Theorem 1.10 of [1]). Suppose that (G,X) is of abelian type, that SK(G,X) is compact
and that GQp is quasi-split, then

H∗sing(K
p)ss

is concentrated in middle degree d, where ss means small slope.

1.2.2. Automorphic local systems. Associated to an irreducible representations Wν of G of highest weight
ν, there is an automorphic local system Wν of rank equal to the dimension of Wν . Its cohomology with
C-coefficients can also be understood in terms of automorphic forms. For example on the modular curve
we get (Tate twists of) symmetric powers of the standard local system, which is the rational Tate module
of the universal elliptic curve.

There is a classical vanishing theorem of Faltings, who shows that

H∗sing(SK(G,X),Wν)

is concentrated in middle degree, as long as ν is sufficiently regular. He does this by describing the
cohomology of Vν in terms of the cohomology of certain automorphic vector bundles Vκ related to Wν

and then proving vanishing results for those. Actually, this is also the way Boxer and Pilloni prove
Theorem 1.2.1, so we need to discuss automorphic vector bundles.

1.3. Automorphic vector bundles. Let M ⊂ P ⊂ G be the Levi- and parabolic subgroup determined
by the Shimura datum (G,X) choose T ⊂ B ⊂ P be a maximal torus and a Borel. For each irreducible
representation Vκ of M of highest weight κ there is an automorphic vector bundle Vκ. For example for the
modular curve M = (Gm)2 and the automorphic vector bundles are given by powers of the Lie algebra of
the universal elliptic curve (the second parameter only twists the action of the Hecke-algebra).

1.3.1. Notation. Let X∗(T )+ denote the dominant characters of the torus, and let X∗(T )M,+ denote
the M -dominant cocharacters. Note that X∗(T )+ ⊂ X∗(T )M,+, for example if M is a torus then all
cocharacters are M -dominant. Let W denote the Weyl group of G, which contains the Weyl group
WM ⊂ W and we let MW denote a set of coset representatives of W/Wm of minimal length. Let ρ be
half the sum of the positive roots and let w0,M ⊂WM be the longest element.

There is a combinatorial process which associates to a dominant coweight ν ∈ X∗(T )+ a collection of
M -dominant coweights and Faltings‘ BGG resolution describes the cohomology of the local system W∨ν
in terms of the cohomology of the automorphic vector bundles associated to κ.

H∗sing(SK(G,X),W∨ν ) =
⊕

w∈MW

H i−d+l(w)
(
SK(G,X),V−w0,M (w(ν+ρ)−ρ

)
.

For example in the case of the modular curve then W = {1, s} and WM = {1} so that MW has two
elements and we recover the Hodge decomposition

H1(Y1(N),Wk) = H0(Vk+2)⊕H1(V−k).
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1.4. Coherent cohomology of automorphic vector bundles. It is not true that every automorphic
vector bundle is associated to an automorphic local system by the above process. For example modular
forms of weight 1 do not contribute to the cohomology of an automorphic local system on the modular
curve. At the same time, we do not expect that the ‘interesting’ cohomology classes of all automorphic
vector bundles are concentrated in a single degree. We only expect this for automorphic vector bundles
associated to ‘sufficiently regular weight κ’, and for those automorphic vector bundles the degree in which
we expect the ‘interesting’ cohomology classes depends on κ!

Let C(κ)+ = {w ∈W | w−1w0,M (κ+ρ) ∈ X∗(T )−Q} and let `min(κ), `max(κ) be the minimum respectively

maximum length of an element in C(κ)+. Then we expect that all the ‘interesting’ cohomology classes of

H∗(SK(G,X),Vκ)

are concentrated in the range [`min(κ), `max(κ)]. For example on the modular curve we expect ‘interesting’
cohomology classes in a single degree unless κ = 1, when we expect ‘interesting’ cohomology classes in
both degrees. In general, this range of degrees is a single degree if κ + ρ is Weyl-conjugate to a unique
anti-dominant element (that is, if κ+ ρ is regular). As before we define

H∗(Kp, κ) := lim−→
Kp

H∗(SKpKp(G,X),Vκ).

Then another main result of Boxer-Pilloni is that

Theorem 1.4.1 (Theorem 1.5 of [1]). Assume that (G,X) is of abelian type, that SK(G,X) is compact
and that GQp is quasi-split, then

H∗(Kp, κ)ss
M (κ),

is concentrated in the range of degrees [`min(κ), `max(κ)]. Here ss stands for small slope.

Remark 1.4.2. There are other vanishing results in the literature that work without the finite slope
condition, but they all have to assume that κ is sufficiently regular in some way.

1.5. Constructions and main results. The main new construction in the paper are certain ‘local’
overconvergent cohomology groups associated to w ∈ MW and an automorphic vector bundle Vκ. These
will be defined as the cohomology of the automorphic vector bundle on certain open subsets of the adic
generic fibre (we are dropping Kp from the notation now)

SKp ,

with certain support conditions. Basically we will construct a filtration by closed subsets

SKp = Z0 ⊃ Z1 ⊃ · · · ⊃ Zd ⊃ Zd+1 = ∅

and study the E1 spectral sequence associated to this filtration. The objects of the E1 page will be the
cohomology groups

RΓd(Vκ) := RΓZd\Zd+1
(SKp \ Zd+1,Vκ)

and in fact

RΓd =
⊕

w∈MW
l(w)=d

RΓw(Vκ).
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Our filtration of the Shimura variety is pulled back from a filtration of the adic flag variety FL via the
Hodge-Tate period map

S FL

SKp Kp\FL.

πHT

The filtration on the flag variety comes from the Bruhat-stratification on the special fiber. The shape of
the spectral sequence is a ‘rhombus’ and its diagonal is given by the Cousin complex

H0
Z0/Z1

(SKp ,Vκ)→ H1
Z1/Z2

(SKp ,Vκ)→ · · · → Hd
Zd−1/Zd

(SKp ,Vκ).

The whole spectral sequence has an action of the Hecke-algebra Qp[Kp\G(Qp)/Kp] and in fact it acts by
compact operators on all the terms on the E1 page. This means that we can pass to finite slope subspaces.

Theorem 1.5.1 (Theorem 5.18 of [1]). The top half of the rhombus (everything strictly above the diagonal)
is zero. To be precise, the complexes

RΓw(Vκ)fs

are concentrated in degrees [0, `(w)].

Conjecture 1.5.2 (Conjecture 5.20 of [1]). The bottom half of the rhombus (everything strictly below the
diagonal) is zero, in other words, the complex

RΓw(Vκ)fs

is concentrated in degrees [`(w), d]. Therefore the cohomology H i(SKp ,Vκ) is computed by the Cousin
complex).

Remark 1.5.3. There is a natural pairing between the top half and the bottom half of the spectral sequence.
If we knew it was perfect, then the vanishing of the top half would give vanishing of the bottom half. We
do know that the perfect pairing induces Serre duality on the abutment of the spectral sequence and this
allows us to deduce that the cohomology groups H i(SKp ,Vκ)fs are subquotients of the cohomology of the
Cousin spectral sequence.

To prove these vanishing conjectures, we need to prove a lower bound on the slopes of our overconvergent
cohomology groups. Then we define small slope and strictly small slope conditions such that the following
result holds:

Theorem 1.5.4 (Corollary 5.65). The cohomology groups

RΓw(Vκ)sss

are zero unless w ∈ C(κ)+, where sss stands for strictly small slope.

Remark 1.5.5. Boxer and Pilloni conjecture stronger slope estimates than they can prove (Theorem 5.33
vs Conjecture 5.29). I think Conjecture 5.29 would imply the above theorem with sss replaced by ss (but
I haven’t checked this!). They mention that proving Conjecture 5.29 would require a study of integral
models of these Hecke correspondences, and also that it is compatible with Conjecture 4.5 of [3]
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If κ + ρ is regular then the theorem tells us that the spectral sequence only has a single column, and it
follows that it must degenerate at E1. Then we deduce from our duality argument that there is only one
nonzero term in the column, which gives the following result (a classicality theorem)

Theorem 1.5.6 (Theorem 5.66 of [1]). Suppose that κ+ ρ is regular, then

RΓw(Vκ)sss ' RΓ(Kp, κ)sss

and it is concentrated in degree `(w).

For more general weights κ we get a vanishing result, but not a classicality theorem (we don’t expect the
spectral sequence to degenerate at E1, so we probably don’t expect a classicality theorem?)

Theorem 1.5.7 (Theorem 5.69 of [1]). Now let κ be arbitrary, then

H∗(Kp, κ)sss

is concentrated in degrees [`−(w), `+(w)].

Remark 1.5.8. This is weaker than Theorem 1.5 of [1] which we stated at the beginning, which had ss
instead of sss. The way to improve the slope bounds is to p-adically interpolate over the eigenvariety,
and then prove the result for the regular weights (which are dense). To prove these results in regular
weight, we relate the cohomology of automorphic vector bundles of regular weight to the cohomology of
automorphic local systems, and then run an argument of Vincent Lafforgue [4] there. I haven’t understood
Section 6 yet, and I will probably not cover it next week.

1.5.9. Omissions.

• Interpolating the coefficients sheaves Vκ and eigenvarieties, applications to local-global compati-
bility (all of Section 6)

• Duality and the dual support conditions, small slope conditions etc.

• De Rham and rigid cohomology.

• Non-compact Shimura varieties.

• Shimura varieties of abelian type.

2. Siegel threefolds

From now on we will assume that GQp = GSp4 and give a detailed overview of the constructions in the
Boxer-Pilloni paper. First we define GSp4 and T ⊂ B ⊂ P and the Weyl groups, root system etc carefully.
We’ve basically copied this from Chapter 2 of [5].

Consider V = Z⊕4 with basis 〈x2, x1, y1, y2〉 and symplectic form Ψ given by 〈xi, yi〉 = 1. We define
the group GSp4 as the group scheme over Z defined by the functor sending a commutative ring R to
automorphism of V ⊗Z R preserving ΨR up to a scalar in R. The parabolic P is the stabiliser of the
standard Lagrangian subspace 〈y1, y2〉 and its Levi M is isomorphic to GL2×Gm. We then choose a Borel
B such that its intersection with M is isomorphic to the upper triangular matrices in GL2×Gm. We take
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the maximal torus T ⊂ B isomorphic to G3
m with (t1, t2, c) 7→ diag(t1c, t2c, t

−1
2 c, t−11 c) = t(t1, t2, c). We

identify the character group with

{(k1, k2; k) ∈ Z3 | k1 + k2 = k mod 2}
such that

(k1, k2; k)(t1, t2, c) = tk11 · t
k2
2 · c

k

With our choice of Borel B the dominant characters are given by

X∗(T )+ = {(k1, k2; k) ∈ X∗(T ) | 0 ≥ k1 ≥ k2},

the positive simple roots are given by α1 = (1,−1, 0) and α2 = (0, 2, 0). The M -dominant cocharacters
are given by

X∗(T )M,+ = {(k1, k2; k) ∈ X∗(T ) | k1 ≥ k2}
and the half sum of the positive roots is given by

ρ = (−1,−2; 0).

The Weyl group is generated by the reflections s0(k1, k2; k) = (k2, k1; k) and s1(k1; k2; k) = (−k1; k2; k)
and the Weyl group of M is generated by s0, such that

MW = {1, s0, s1s0, s1s0s1}.
Here is a picture of the root system

Figure 1. The root system of GSp4

2.1. Flag varieties. The flag variety FL = P\G is a smooth projective scheme of relative dimension
3 over Zp also known as the ‘Lagrangian Grassmannian’ because it is the moduli spaces of Lagrangian
subspaces of Z⊕4p . Our fixed choice of Borel B gives us a stratification

G/B =
⋃

w∈MW

Cw =
⋃

w∈MW

(B ∩ w−1Pw)\B,

where Cw are smooth Bruhat cells of (relative) dimension `(w). These also have moduli interpretations
as Lagrangian subspaces H ⊂ Z⊕4p with certain intersection behaviour with respect to the standard flag
〈x1〉 ⊂ 〈x1, x2〉. Explicitly: The smallest Bruhat cell (a point), is the subspace where H = 〈x1, x2〉, the
largest Bruhat cell is the subspace where H∩〈x1, x2〉 = 0 and the middle ones are where H∩〈x1, x2〉 = 〈x1〉
or where H ∩ 〈x1, x2〉 is one-dimensional but not equal to 〈x1〉. In our case the Bruhat cells are linearly
ordered.
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The closure of the Bruhat cell Cw is the Schubert variety

Xw =
⋃
w′≤w

Cw,

we also introduce the open subspace

Yw =
⋃
w′≥w

Cw.

Note that Cw in canonically isomorphic to an affine space of that dimension of dimension `(w) (it is
isomorphic to a product of root subgroups of G, see Lemma 3.3 of [1])

2.2. Analytic neighbourhoods. The promised filtration by closed subspaces on the adic generic fibre
FL of the flag variety is defined as follows

Zr = ] FL≥r[

where

FL≥r =
⋃

w∈MW
`(w)≥r

Cw.

In our case this specialises to FL≥r = Yw = Yr where w is the unique element of length r for 0 ≤ r ≤ 3.

Lemma 2.2.1. The complement of ] FL≥r+1[ in FL is equal to ] FL≤r[ and the intersection

]Yw[∩]Xw[=]Cw[0,0

is a partial compactification of the tube of Cw.

Remark 2.2.2. In the extreme case where w is of length zero, then

Z0 = FL
and Z0 \ Z1 is a partial closure of the tube of the point Cw in the special fiber of k. The cohomology
with support that we are taking is just going to be the cohomology of Z0 \ Z1, and this is going to be
concentrated in degree 0 because Z0 \ Z1 is acyclic. [And a similar result will hold after pulling back via
the Hodge-Tate period map, more on this next week!]
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3. Part II

I changed my conventions for the root system of GSp4 compared to last week, to make sure that they
agree with Boxer-Pilloni and also with Toby’s talk next week. Today we are going to go construct the
overconvergent cohomology groups that I mentioned existed last week, with emphasis on the case of
G = GSp4. First, we need to discuss some basics about cohomology with support in a closed subscheme,
and the action of finite flat correspondences on such cohomology groups.

3.1. Analytic continuation for modular forms. When constructing spaces of overconvergent modular
forms of weight k, one runs into the following kind of analytic continuation result. Let U be an ε-
neighbourhood of the ordinary locus and let T = Up be the Hecke correspondence. Then T (U) ⊂ U is a
strict inclusion and so we get a map

T : H0(U, Vk)→ H0(T (U), Vk)

and if we compose with the natural restriction map we have defined an endomorphism of H0(U, Vk).
Moreover, we can conclude that

H0(U, Vk)
fs ' H0(T (U), Vk)

fs

is an isomorphism. Here fs means finite slope and corresponds to taking the part of the cohomology
where T acts with nonzero eigenvalues. The claimed isomorphism follows from the diagram

H0(U, Vk) H0(T (U), Vk)

H0(U, Vk) H0(T (U), Vk).

T T
T

Indeed, we can show that any eigenvector with nonzero T eigenvalue on the left hand side must map
nontrivially to the right hand side, and similarly every such eigenvector on the right hand side must come
from the left hand side. When we are doing higher Coleman theory, we will (in general) not be able to
find ε-neighbourhoods U of ordinary loci (or Igusa varieties) such that T (U) ⊂ U , and instead we will
have to work with cohomology with support. [George Boxer draws really nice pictures in talks explaining
this, see for example https://www.youtube.com/watch?v=gk1C-eR9i3A about 20 minutes in.] We will
be able to find some U such that T (U) ⊂ U but that U will be ‘too big’, at least if we interpret the
pictures literally.

3.2. Cohomology with support. Let X be an adic space locally of finite type over Spa(Qp,Zp), let F
be an OX -module on X. If Z is a closed subset of X then we can take cohomology with support

RΓZ(X,V )

which is the derived functor of sections with supports. This has the following properties (see Section 2.1
of [1])

• If Z ⊂ Z ′ then there is a corestriction map map RΓZ(X,V )→ RΓZ′(X,V ).

• If Z ⊂ X ′ ⊂ X for some open X ′, then there is a restriction map RΓZ(X,V ) → RΓZ(X ′, V )
(which is a quasi-isomorphism).

• If f : X → Y is a morphism such that f−1(ZY ) ⊂ ZX , then there is a pullback map

RΓZY
(Y,F)→ RΓZX

(X, f∗F),

https://www.youtube.com/watch?v=gk1C-eR9i3A
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• If f : X → Y is finite flat such that f(ZX) ⊂ ZY then there is a trace map

RΓZ(X, f∗F)→ RΓZY
(Y,F).

3.3. Finite flat correspondences. Here we follow Section 5.1 of [1]. Consider a diagram

C

X X

p2p1

in the category of adic spaces locally of finite type over Spa(Qp,Zp). We let T and T t denote the functions

p2(p
−1
1 )) and p1(p

−1
2 )) on subsets of X.

Lemma 3.3.1. Suppose that p1 and p2 are finite flat, then T and T t take open sets to open sets and
closed sets to closed sets

Proof. Finite flat maps of adic spaces are open and closed. �

From now on we will assume that p1 and p2 are finite flat. Suppose that we have a coherent sheaf V on
X together with a map T : p∗2V → p∗1V , then there is a map

T : RΓZ∩T (U)(T (U), V )→ RΓT t(Z)∩U (U, V )

constructed as follows (we use that p−12 (T (U)) ⊃ p−11 (U) and that p−11 (T t(Z)) ⊂ p−12 (Z)

RΓZ∩T (U)(T (U), V ) RΓT t(Z)∩U (U, V )

RΓp−1
2 (Z)∩p−1

2 (T (U))(p
−1
2 (T (U)), p∗2V ) RΓp−1

1 (T t(Z))∩p−1
1 (U)(p

−1
1 (U), p∗1V )

RΓp−1
2 (Z)∩p−1

1 (U)(p
−1
1 (U), p∗2V ) RΓp−1

2 (Z)∩p−1
1 (U)(p

−1
1 (U), p∗1V )

p∗2 Tr p1

T

3.4. Analytic continuation. Suppose that we are in the same setting as the previous section, and
assume that T (U) ⊂ U and T t(Z) ⊂ Z. Then we can consider the following diagram

RΓZ∩U (U, V )

RΓZ∩T (U)(T (U), V ) RΓT t(Z)∩U (U, V )

RΓT t(Z)∩T (U)(T (U), V )

T

We can now define endomorphisms labelled T for all the spaces in the diagram, and then we have the
following proposition

Proposition 3.4.1. Assume that T is a compact operator, then all the maps in the above diagram induce
isomorphisms on finite slope spaces.
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Proof. This follows as above. �

We will often be in the situation that Tn(U) ⊂ U and (T t)nZ ⊂ Z, which means that we can shrink our
Z and U ‘as much as we want’.

3.5. The Hodge-Tate period map. Our Shimura varieties of Hodge type come equipped with a Hodge-
Tate period map. When G = GSp4, the Shimura variety SKp with infinite level at p ‘parametrises’
principally polarized abelian surfaces together with a choice of symplectic similitude

TpA ' Z⊕4p .

This is naturally a pro-étale GSp4(Zp) torsor over the Shimura variety with hyperspecial level at p.

Given an abelian variety over Cp with a choice of basis for its Tate module, we get a point in a flag variety
as follows: The Hodge-Tate filtration

0→ Lie(A)→ Tp ⊗Zp Cp → ωAt → 0

gives us a Lagrangian subspace Lie(A) of C⊕4p ' Tp⊗Zp Cp, in other words, an element of the Lagrangian
Grassmannian. Of course we need to make this work in families, and for that we need Scholze’s p-adic
Hodge theory paper. This works exactly the same for G = GSp2g and can be refined to Shimura varieties
of Hodge type (see [2]). [In fact there is work of David Hansen refining it to all Shimura varieties]. Let
us summarise this section by the following Theorem:

Theorem 3.5.1 (Scholze, Caraiani-Scholze). There is a perfectoid space SKp that is the inverse limit
of SKpKp (but not quite in the category of adic spaces). It has an action of G(Qp) and an equivariant
morphism of adic spaces

πHT : SKp → FL.

3.6. The Hodge-Tate period map at finite level. Boxer and Pilloni don’t work with infinite level
Shimura varieties, but still want to make use of the Hodge-Tate period map. The following Theorem
tells us that this is possible and moreover it tells us that the Hodge-Tate period map is affine. We define
a topological space FL/Kp using the quotient topology and we call an open subset of it affinoid if its
inverse image in FL is affinoid. If V ⊂ U are open subsets then we call V a rational subset of U if this
is true after taking inverse images in FL. Similarly, there is a notion of classical point.

Theorem 3.6.1 (Theorem 4.66 of [1]). There is a continuous map

πHT,Kp : SKpKp → FL/Kp

which is equivariant for the action of the Hecke algebra at p via Hecke correspondences. Moreover, every
point x ∈ FL/Kp that comes from a classical point upstairs has an affinoid neighbourhood U such that
the inverse image under πHT,Kp of any rational subset V ⊂ U is affinoid.

3.6.2. Automorphic sheaves. Let me try to summarise 10 pages of [1] in one sentence: Hecke correspon-
dences are cohomological correspondences for the automorphic sheaves Vk, in other words, there are
maps p∗1Vk → p∗2Vk. Moreover, we can describe these maps ‘explicitly’ in local coordinates, this will be
important for proving slope bounds later.
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3.7. Dynamics of the torus action. Let v : Qp → R ∪∞ denote the p-adic valuation normalised by
v(p) = 1. Define

T+(Qp) = {t ∈ T (Qp) | v(α(t)) ≥ 0 for α ∈ Φ+}

and define T++ to be the same except with v(α(t)) > 0. We also want to define T− and T−− where we
replace ≥ with ≤ and <, respectively.

Lemma 3.7.1 (Lemma 3.23 of [1]). If t ∈ T+(Qp), then

]Xw][·t ⊂][Xw]

and if t ∈ T−(Qp) then

]Yw][·t ⊂][Yw].

Proof. This requires an explicit description of the tube ]Cw[ in terms of analytic root subgroups, which
we haven’t covered. �

3.8. Dynamics of Correspondences. Now let Kp = I be the Iwahori subgroup of GSp4(Qp), i.e.,
the subgroup of GSp4(Zp) whose mod p reduction lies in the Borel subgroup. Then the Hecke algebra
HKp := Z[Kp\G(Qp)/Kp] acts via finite flat correspondences on FL/Kp.

Lemma 3.8.1. Let t ∈ T+(Qp) and consider the Hecke correspondence T = KptKp, then

Tn(U) ⊂ Tn−1(U) ⊂ · · · ⊂ U
(T t)n(Z) ⊂ (T t)n−1(Z) ⊂ · · · ⊂ Z.

Proof. This follows from Lemma 3.7.1 once we notice that transposition of Hecke operators switches t
with t−1, and the fact that t ∈ T+ implies that t−1 ∈ T−. �

This means it makes sense to consider the action of the Hecke algebra

H+
Kp

which is generated by the double cosets KptKp for t ∈ T+(Qp) (we will also consider the ++ variant).
For G = GSp4 and Kp = I, the Hecke algebra H+

Kp
is generated by the following Hecke operators

U2 = [Kp diag(p−1, p−1, 1, 1)Kp]

U1 = [Kp diag(p−1, p−2, 1, p−1)Kp]

S = [pKp], S
−1.

So if we are going to take the finite slope part, then we are just taking that part of the cohomology where
U2 and U1 have nonzero eigenvalues.
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3.9. Overconvergent cohomologies. Now let w ∈ MW and define

Uw := π−1HT,Kp
(]X[w),

Zw := π−1HT,Kp
(]Y ]w).

Moreover for κ ∈ X∗(T )+,M we define

RΓw(KpKp, κ) := RΓUw∩Zw(Uw,Vκ).

Using Lemma 3.8.1 we get an action of H+
Kp

on these cohomology groups via restriction-corestriction. We

following result lets us take finite slope parts:

Theorem 3.9.1 (Theorem 5.10 of [1]). There is an action of the Hecke algebra H+
Kp

on RΓw(KpKp, κ)

such that the elements of H++
Kp

act via compact operators. This means that the finite slope subspace

RΓw(KpKp, κ)fs

is well defined.

3.9.2. Change of level and support condition. The paper also defines variants of RΓw(KpKp, κ)+ for levels
Kp,m,n deeper than Iwahori level and for ‘allowable’ support conditions

Theorem 3.9.3 (Theorems 5.13 and 5.14 of [1]). The finite slope part of our overconvergent cohomology
groups do not depend on the choice of level at p or the choice of allowable support condition. From now
on we will denote then as

RΓw(Kp, κ)fs.

3.10. Spectral sequence and the Cousin complex. Recall from last week that there should be a
spectral sequence that computes the cohomology RΓ(SKpKp ,Vκ) in terms of the overconvergent cohomol-

ogy groups. In the case of G = GSp4, we’ve drawn the first page in Figure 2 (we will write H i
w(Kp, κ)fs

for H iRΓw(Kp, κ)fs): There is no cohomology in degrees greater than three because all our adic spaces
are 3-dimensional. We define the Cousin complex

Cous(Kp, κ) := H0
1 (Kp, κ)fs H1

s1(Kp, κ)fs H2
s1s2(Kp, κ)fs H3

s1s2s1(Kp, κ)fs.

Theorem 3.10.1 (Theorem 5.18 of [1]). The top half of the rhombus (everything strictly above the
diagonal) is zero. To be precise, the complexes

RΓw(Vκ)fs

are concentrated in degrees [0, `(w)].

Proof. We give an idea of the proof: There is a long exact sequence in cohomology coming from the
following exact triangle

RΓZw∩Uw(Uw,Vκ)→ RΓ(Zw ∩ Uw,Vκ)→ RΓ(Uw \ Zw,Vκ).

After choosing our support condition and level favourably, then we can arrange for Zw∩Uw to be affinoid,
so that it has no higher cohomology. Then all we have to do is show that the cohomology of RΓ(Uw\Zw,Vκ)
is supported in degrees [0, l(w)− 1].
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H3
1 (Kp, κ)fs

H2
1 (Kp, κ)fs H3

s1(Kp, κ)fs

H1
1 (Kp, κ)fs H3

s1(Kp, κ)fs H2
s1s2(Kp, κ)fs

H0
1 (Kp, κ)fs H1

s1(Kp, κ)fs H2
s1s2(Kp, κ)fs H3

s1s2s1(Kp, κ)fs

H0
s1(Kp, κ)fs H1

s1s2(Kp, κ)fs H2
s1s2s1(Kp, κ)fs

H0
s1s2(Kp, κ)fs H1

s1s2s1(Kp, κ)fs

H0
s1s2s1(Kp, κ)fs

Figure 2. The first page of the spectral sequence computing the cohomology of a Siegel threefold
in terms of overconvergent cohomologies. The Cousin complex is the length four complex in the
middle

On the flag variety we know that ]Xw[\]Yw[= ∪w′<w]Cw[ and it makes some sense to me that we would
expect this to have cohomology in degrees [0, l(w) − 1] since it is basically equal to the tube of a closed
subvariety of the special fiber of FL of dimension l(w)− 1. However that is not how the argument in the
paper goes: It once again uses explicit descriptions of our tubes in terms of analytic root subgroups and
then they shrink their parameters enough so that Uw \ Zw can be covered by l(w)− 1 acyclic spaces. To
be honest I don’t really understand what is going on. �

So now we have cut down our spectral sequence to a much more manageable size (but recall that we
conjecture that the bottom half is also zero, so that the spectral sequence is just ‘equal’ to the Cousin
complex).

3.11. Slopes. Let us work with G = GSp4 explicitly in this section, and consider weights of the form
κ = (k1, k2,−(k1 + k2) such that the automorphic vector bundle

V(k1,k2,−(k1+k2) = Symk1−k2 ωA ⊗Detk2 ωA,

where A is the universal semi-abelian scheme. There are two different ways to discuss slopes of overcon-
vergent cohomology groups (is it obvious that they are equivalent?)

• Take the limit over all levels at p (this doesn’t change our overconvergent cohomology groups, as
we have seen). Then we have an action of T+(Qp) on our cohomology groups, and there is a way
to discuss slopes in this generality (see Section 5.9 of [1]). Basically the cohomology complexes
RΓw(κ) will have a collection of slopes λ that live in X∗(T )R. This means that we can compare
then to other characters using the Bruhat order.
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• Work at Iwahori level, and look at p-adic valuations of eigenvalues of the Up operators U1 and U2.
This is much simpler and is what we will do, however we will phrase our results in the abstract
formalism of slope characters.

Conjecture 3.11.1 (Conjecture 5.29 of [1]). Fix w ∈ MW and κ ∈ X∗(T )M,+. Then the slopes of
RΓw(κ) are bounded below by

w−1w0,M (κ+ ρ) + ρ.

When G = GSp4 and Kp = I (which we can take because the finite slope cohomology groups don’t
depend on the level) this has the following explicit meaning: If κ = (k1, k2;−k1 − k2) then we expect the
the p-adic valuations of the eigenvalues of U1 and U2 to be bounded below by the numbers given in the
following table (which I took straight from [1]): Note that w0,M = s0

1 s1 s1s0 s1s0s1
U2 3 k2 + 1 k2 + 1 k1 + k2
U1 k2 + 3 k2 + 3 2k2 + k1 2k2 + k1

Theorem 3.11.2 (Theorem 5.33 of [1]). Fix w ∈ MW and κ ∈ X∗(T )M,+. Then the slopes of RΓw(κ)
are bounded below by

w−1w0,M (κ)

When G = GSp4 and Kp = I we get the following table

1 s1 s1s0 s1s0s1
U2 0 k2 k2 k1 + k2
U1 k2 k2 2k2 + k1 2k2 + k1

Proof of Theorem 3.11.2. The proof doesn’t seem to be too involved, they just compute what happens in
local coordinates (these computations take up a few pages at the end of Section 4 of [1]). �

Remark 3.11.3. The difference between the Theorem and the conjecture is the constant w−1w0,Mρ + ρ.
Boxer and Pilloni suggest that this term should be related to the geometry of integral models of the relevant
Hecke correspondences. As far as I’m aware, there aren’t any general constructions in the literature for
integral models of such Hecke correspondences with good properties. To be precise, one would like integral
models

C

S S

p1 p2

together with a map p∗2Vκ → p!1Vκ, or perhaps even a map p∗2Vκ → pNp!1Vκ for some optimal power pN of
p. It should be possible to construct such cohomological correspondences when C is a Shimura variety of
parahoric level, see for example [3] for some PEL cases. The results of loc. cit. make crucial use of the
fact that the integral models of Shimura varieties of parahoric level are Cohen-Macaulay and flat. It is
probably very difficult to construct good integral models with cohomological correspondences in general.
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3.12. Small slopes. For a given weight κ, we define a small slope condition ss(κ) and a strictly small
slope condition sss(κ) so that the following results hold per definition:

• If Conjecture 5.29 holds, then

RΓw(κ)ss(κ)

is nonzero only for w ∈ C(κ)+.

• The cohomology complexes

RΓw(κ)sss(κ)

are nonzero only for w ∈ C(κ)+.

We recall that

C(κ)+ = {w ∈W | w−1w0,M (κ+ ρ) ∈ X∗(T )−Q}.
In particular if κ + ρ is regular then the Cousin complex is concentrated in a single column, and by the
duality argument which I haven’t explained, it follows that it degenerates at E1 giving a quasi-isomorphism

RΓw(κ)sss(κ) ' RΓ(κ)sss(κ).

Moreover, the cohomology of the above complex is concentrated in degree l(w) for the unique w ∈ C(κ)+.

When G = GSp4, we expect the following κ = (k1, k2;−k1 − k2) to have nonzero cohomology in the
following degrees This defines four regions in the plane, which we’ve drawn them in Figure 3.

H0 0 ≤ k2 − 2 ≤ k1 − 1
H1 0 ≤ 2− k2 ≤ k1 − 1
H2 0 ≤ k1 − 1 ≤ 2− k2
H3 0 ≤ 1− k1 ≤ 2− k2

References

[1] George Boxer and Vincent Pilloni, Higher Coleman theory, 2020. in preparation.
[2] Ana Caraiani and Peter Scholze, On the generic part of the cohomology of compact unitary Shimura varieties, Ann. of

Math. (2) 186 (2017), no. 3, 649–766. MR3702677
[3] Najmuddin Fakhruddin and Vincent Pilloni, Hecke operators and the coherent cohomology of Shimura varieties, arXiv

e-prints (October 2019), available at 1910.03790.
[4] Vincent Lafforgue, Estimées pour les valuations p-adiques des valeurs propres des opérateurs de Hecke, Bull. Soc. Math.
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(1,2)

Figure 3. Weights of automorphic vector bundles for Siegel threefolds are divided into four regions:
The coloured dots represent the lattice point that lie in only one of the four regions, with blue
corresponding to the weights where we only expect finite slope cohomology in H0, red to H1, green
to H2 and orange to H3. The black dots bordering the regions will lie in multiple regions; these are
the irregular weights where we expect to see finite slope cohomology in multiple degrees.
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